
© Copyright 1991, 1994 National Instruments Corporation.
All Rights Reserved.

Using Your NI-488® and NI-488.2™

Subroutines for Visual Basic
for Windows

February 1994 Edition

Part Number 320418-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices:
Australia (03) 879 9422, Austria (0662) 435986, Belgium 02/757.00.20,
Canada (Ontario) (519) 622-9310, Canada (Québec) (514) 694-8521,
Denmark 45 76 26 00, Finland (90) 527 2321, France (1) 48 14 24 24,
Germany 089/741 31 30, Italy 02/48301892, Japan (03) 3788-1921,
Netherlands 03480-33466, Norway 32-848400, Spain (91) 640 0085,
Sweden 08-730 49 70, Switzerland 056/27 00 20, U.K. 0635 523545

Limited Warranty

The media on which you receive National Instruments software are
warranted not to fail to execute programming instructions, due to defects in
materials and workmanship, for a period of 90 days from date of shipment,
as evidenced by receipts or other documentation. National Instruments will,
at its option, repair or replace software media that do not execute
programming instructions if National Instruments receives notice of such
defects during the warranty period. National Instruments does not warrant
that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the
factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will
pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this manual is
accurate. The document has been carefully reviewed for technical accuracy.
In the event that technical or typographical errors exist, National
Instruments reserves the right to make changes to subsequent editions of
this document without prior notice to holders of this edition. The reader
should consult National Instruments if errors are suspected. In no event
shall National Instruments be liable for any damages arising out of or
related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES
CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE
PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS,
USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the
liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of
action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner's failure to follow the National Instruments
installation, operation, or maintenance instructions; owner's modification of

the product; owner's abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or
transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in
whole or in part, without the prior written consent of National Instruments
Corporation.

Trademarks

NI-488® and NI-488.2™ are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their
respective companies.

Warning Regarding Medical and Clinical Use
of National Instruments Products

National Instruments products are not designed with components and testing
intended to ensure a level of reliability suitable for use in treatment and
diagnosis of humans. Applications of National Instruments products
involving medical or clinical treatment can create a potential for accidental
injury caused by product failure, or by errors on the part of the user or
application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed by
properly trained and qualified medical personnel, and all traditional medical
safeguards, equipment, and procedures that are appropriate in the particular
situation to prevent serious injury or death should always continue to be
used when National Instruments products are being used. National
Instruments products are NOT intended to be a substitute for any form of
established process, procedure, or equipment used to monitor or safeguard
human health and safety in medical or clinical treatment.

© National Instruments Corp. v Visual Basic

Contents

About This Manual ..vii
Organization of This Manual ..vii
Conventions Used in This Manual ... viii
Related Documentation .. ix
Customer Communication .. ix

Chapter 1
General Information ..1-1

Visual Basic Files ... 1-1
Programming Preparations ... 1-2
Visual Basic NI-488 I/O Calls and Functions1-3

NI-488 IL Functions... 1-6
Dynamic Reconfiguration of Board and
Device Characteristics 1-8
Using the NI-488.2 Routine Examples1-9

Chapter 2
Programming Examples ... 2-1

Visual Basic NI-488.2 Programming Example2-1
Visual Basic Example Program–NI-488.2
Routines ... 2-4

GPIB Programming Examples ... 2-12
Visual Basic Example Program–Device Functions 2-14
Visual Basic Example Program–Board Functions....... 2-18

Appendix A
Multiline Interface Messages ... A-1

Appendix B
Customer Communication ..B-1

Glossary... G-1

Contents

Visual Basic vi © National Instruments Corp.

Figures

Figure 1-1. GPIBPROJ.MAK ... 1-3

Figure 2-1. VB488_2.MAK ..2-3
Figure 2-2. VBDEVICE.MAK ... 2-13

Tables

Table 1-1. Visual Basic NI-488 Calls ..1-4
Table 1-2. Functions That Alter Default Characteristics 1-8
Table 1-3. Visual Basic NI-488.2 Routines ... 1-9

© National Instruments Corp. vii Visual Basic

About This Manual

This manual contains information for programming the NI-488.2 routines
and the NI-488 functions in Visual Basic. The term Visual Basic as used in
this manual refers to Microsoft Visual Basic for Windows.

This manual assumes that the driver is installed and that you are familiar
with the driver operation and programming in Visual Basic.

Organization of This Manual

This manual is organized as follows.

• Chapter 1, General Information, contains information you need to
prepare for programming the NI-488.2 driver in Visual Basic.

• Chapter 2, Programming Examples, contains programming examples
for the NI-488.2 routines and NI-488 functions.

• Appendix A, Multiline Interface Messages , contains an interface
message reference list, which describes the mnemonics and messages
that correspond to the interface functions.

• Appendix B, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on
our products and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

About This Manual

Visual Basic viii © National Instruments Corp.

Conventions Used in This Manual

The following conventions are used in this manual:

italic Italic text denotes emphasis, a cross
reference, or an introduction to a key
concept.

bold italic Bold italic text denotes a note, caution, or
warning.

monospace Lowercase text in this font denotes text or
characters that are to be literally input from
the keyboard, sections of code,
programming examples, and syntax
examples. This font is also used for the
proper names of disk drives, paths,
directories, programs, subprograms,
subroutines, device names, functions,
variables, filenames, and extensions, and
for statements and comments taken from
program code.

bold monospace Lowercase text in this font is used to highlight
the location and usage of NI-488.2 routines and
NI-488 functions on sample programs

<> Angle brackets enclose the name of a key on the
keyboard–for example, <PageDown>.

<Control> Key names are capitalized.

IEEE 488 IEEE 488 and IEEE 488.2 are used throughout
IEEE 488.2 this manual to refer to the ANSI/IEEE Standard

488.1-1987 and the ANSI/IEEE Standard
488.2-1987, respectively, which define the
GPIB.

NI-488.2 NI-488.2 is used throughout this manual to refer
to the NI-488.2 software unless otherwise noted.

About This Manual

© National Instruments Corp. ix Visual Basic

Visual Basic Visual Basic is used throughout this manual to
refer to Visual Basic for Windows unless
otherwise noted.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms
are listed in the Glossary.

Related Documentation

The following documents contain information that you may find helpful as
you read this manual:

• NI-488.2 Software Reference Manual for MS-DOS, (part
number 320282-01)

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1987, IEEE Standard Codes, Formats,
Protocols, and Common Commands

• Microsoft Visual Basic Programmer's Guide

Customer Communication

National Instruments wants to receive your comments on our products and
manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendix B, Customer
Communication , at the end of this manual.

© National Instruments Corp. 1-1 Visual Basic

Chapter 1
General Information

This chapter contains information you need to prepare for programming the
NI-488.2 driver in Visual Basic.

Visual Basic Files

The NI-488.2 forWindows Language Interface for Microsoft Visual Basic
diskette contains the following files which are relevant to programming in
Visual Basic.

The following are Microsoft Visual Basic language interface files.

VBIB.BAS Visual Basic source file with NI-488 functions
and NI-488.2 routines that call the GPIB.DLL .

NIGLOBAL.BAS Visual Basic global module, includes certain
predefined constant declarations.

The following is a skeleton for creating a new Visual Basic application
project.

GPIBPROJ.MAK skeleton's project file
GPIBPROJ.FRM skeleton's form file

The following is a sample project that uses NI-488 board-level functions.

VBBOARD.MAK sample's project file
VBBOARD.FRM sample's form file
VBBOARD.EXE sample made into an executable file

The following is a sample project that uses NI-488 device-level functions.

VBDEVICE.MAK sample's project file
VBDEVICE.FRM sample's form file
VBDEVICE.EXE sample made into an executable file

General Information Chapter 1

Visual Basic 1-2 © National Instruments Corp.

The following is a sample project that uses NI-488.2 routines.

VB488_2.MAK sample's project file
VB488_2.FRM sample's form file
VB488_2.EXE sample made into an executable file

Copy the Visual Basic distribution files to your work area and store the
original diskettes in a safe place.

Programming Preparations

Both the NIGLOBAL.BAS and VBIB.BAS files must be included as part
of your application project. The NIGLOBAL.BAS file contains all the
GPIB-related variable declarations and constant definitions. Any global
constants or type declarations that are part of your application should be
included in this file. The VBIB.BAS file provides the interface to the
NI-488 and NI-488.2 function calls in the GPIB.DLL .

An application project template, GPIBPROJ.MAK , is provided to make it
easy to create a new Visual Basic GPIB application project. Open the
project GPIBPROJ.MAK , add the code and forms necessary for your GPIB
application, and save it as YOURPROJ.MAK . The GPIBPROJ.MAK file
already includes NIGLOBAL.BAS and VBIB.BAS .

If you are using Microsoft Visual Basic 1.0, you must edit
NIGLOBAL.BAS to define the constants TRUE and FALSE as follows:

Global Const True = -1
Global Const False = 0

In Microsoft Visual Basic 2.0 and higher, TRUE and FALSE are reserved
words, therefore these constants are no longer defined in NIGLOBAL.BAS .

Chapter 1 General Information

© National Instruments Corp. 1-3 Visual Basic

Figure 1-1. GPIBPROJ.MAK

For more details on creating new Visual Basic projects, forms, and controls,
see the Microsoft Visual Basic Programmer's Guide .

Visual Basic NI-488 I/O Calls and Functions

The most commonly used I/O calls are ibrd and ibwrt . In Visual Basic,
these functions read and write from a character string that can be
approximately 65,535 bytes in length.

In addition, integer I/O calls (ibrdi and ibwrti) are provided for users
who need to perform arithmetic operations on the data and want to avoid the
overhead of converting to the character strings required by ibrd and
ibwrt and back into the integer format for the arithmetic operations.

ibrdi and ibwrti are passed data in the form of an integer array, instead
of a character string. Using these functions, you can access the data
directly as integers instead of defining them as characters and then
converting each pair of characters to an integer. Internally, the ibwrti
function sends each integer to the GPIB in low-byte, high-byte order. The

General Information Chapter 1

Visual Basic 1-4 © National Instruments Corp.

ibrdi function reads a series of data bytes from the GPIB and stores them
into the integer array in low-byte, high-byte order.

In addition to ibrdi and ibwrti , the asynchronous functions ibrdia
and ibwrtia are provided to perform asynchronous integer reads and
writes.

Table 1-1 contains a summary of the Visual Basic NI-488 calls. These calls
have the same syntax as the QuickBASIC/BASIC NI-488 functions. For a
more detailed description, see the NI-488.2 Software Reference Manual for
MS-DOS.

The first argument of all function calls except ibfind and ibdev is the
integer variable ud , which serves as a unit descriptor. Refer to the IBFIND
and IBDEV function descriptions in Chapter 5, NI-488 Software
Characteristics and Functions , of the NI-488.2 Software Reference Manual
for MS-DOS, to determine the type of unit descriptor to use.

Table 1-1. Visual Basic NI-488 Calls

Call Syntax Description

ibask (ud%,option%,value%) Return information about
software configuration
parameters

ibbna (ud%,bname$) Change board of device

ibcac (ud%,v%) Become Active Controller

ibclr (ud%) Clear specified device

ibcmd (ud%,cmd$) Send commands from string

ibcmda (ud%,cmd$) Send commands asynchronously
from string

ibconfig (ud%,option%,value%) Configure the driver

ibdev (board.index%,pad%,sad%,
 tmo%,eot%,eos%,ud%)

Open and initialize an unused
device when the device name is
unknown

(continues)

Chapter 1 General Information

© National Instruments Corp. 1-5 Visual Basic

Table 1-1. Visual Basic NI-488 Calls (continued)

Call Syntax Description

ibdma (ud%,v%) Enable/disable DMA

ibeos (ud%,v%) Change/disable EOS mode

ibeot (ud%,v%) Enable/disable END message

ibevent (ud%,event%) Return the next event

ibfind (brdname$,ud%) Open device and return unit
descriptor

ibgts (ud%,v%) Go from Active Controller to
standby

ibist (ud%,v%) Set/clear ist

iblines (board.index%,lines%) Get status of GPIB lines

ibln (ud%,pad%,sad%,listen%) Check for presence of device on
bus.

ibloc (ud%) Go to local

ibonl (ud%,v%) Place device online/offline

ibpad (ud%,v%) Change primary address

ibpct (ud%) Pass control

ibppc (ud%,v%) Parallel poll configure

ibrd (ud%,rd$) Read data to string

ibrda (ud%,rd$) Read data asynchronously to
string

ibrdf (ud%,flname$) Read data to file

ibrdkey† (ud%,rd$) Read data from a hardware key

ibrpp (ud%,ppr%) Conduct a parallel poll

ibrsc (ud%,v%) Request/release system control

ibrsp (ud%,spr%) Return serial poll byte

ibrsv (ud%,v%) Request service

(continues)

General Information Chapter 1

Visual Basic 1-6 © National Instruments Corp.

Table 1-1. Visual Basic NI-488 Calls (continued)

Call Syntax Description

ibsad (ud%,v%) Change secondary address

ibsic (ud%) Send interface clear

ibsre (ud%,v%) Set/clear remote enable line

ibstop (ud%) Abort asynchronous
operation

ibtmo (ud%,v%) Change/disable time limit

ibtrg (ud%) Trigger selected device

ibwait (ud%,mask%) Wait for selected event

ibwrt (ud%,wrt$) Write data from string

ibwrta (ud%,wrt$) Write data asynchronously
from string

ibwrtf (ud%,flname$) Write data from file

ibwrtkey† (ud%,wrt$) Write data to a hardware
key

† ibrdkey and ibwrtkey are OEM functions. Refer to NI-488 Hardware
Key Functions Reference Guide , for a detailed description of these functions.

NI-488 IL Functions

Visual Basic, like QuickBASIC (versions 4.0 and later) and BASIC
(version 7.0), supports both function and subroutine calls. The NI-488
routines are all Visual Basic subroutines. This interface has been expanded
so that the NI-488 routines can be accessed as Visual Basic functions.
Refer to NI-488 IL Functions in Chapter 5, NI-488 Software Characteristics
and Functions, of the NI-488.2 Software Reference Manual for MS-DOS.

• All NI-488 subroutines (ibrd , ibwrt , …) are available via the Call
statement.

• The names of the new functions are identical to the existing subroutine
names, except that the second letter of each name has been changed
from b to l. For example, the subroutine ibsic is also available as
the function ilsic .

Chapter 1 General Information

© National Instruments Corp. 1-7 Visual Basic

• GPIB subroutine and function calls may be freely mixed throughout a
Visual Basic project.

• The GPIB Visual Basic language interface file, VBIB.BAS, contains a
complete list of all the subroutine and function declarations. The
NIGLOBAL.BAS file contains the declaration of the global variables
ibsta, iberr , ibcnt , and ibcntl . These two files must both be
part of any GPIB Visual Basic application project.

• In general, the functions behave identically to the subroutines with the
few exceptions noted in the following paragraph. The description of
each subroutine found in this manual can be applied to the functions,
except for the syntax-specific information.

Here are the differences between the existing subroutines and the il-
functions.

• ilfind returns a descriptor associated with the specified board or
device. Use this value in all subsequent functions that access that
device. Normal usage would resemble the following.

ud% = ilfind ("GPIB0")

• ildev opens and initializes an unused device when the device name is
unknown. Normal usage would resemble the following.

ud% = ildev (0, 6, &H67, 13, 7, 0)

• ilcmd , ilcmda , ilrd , ilrda , ilwrt , and ilwrta require a third
parameter which specifies the number of bytes to transfer. The
function syntax is as follows.

sta% = ilcmd (ud%, cmd$, cnt%)
sta% = ilcmda (ud%, cmd$, cnt%)
sta% = ilrd (ud%, rd$, cnt%)
sta% = ilrda (ud%, rd$, cnt%)
sta% = ilwrt (ud%, wrt$, cnt%)
sta% = ilwrta (ud%, wrt$, cnt%)

• All functions, except ilfind and ildev , return the value of
ibsta , permitting the following construct.

If (ilrd (ud%, rd%, cnt%) < 0) Then call GPIBERROR

General Information Chapter 1

Visual Basic 1-8 © National Instruments Corp.

Dynamic Reconfiguration of Board and Device Characteristics

Some functions can be called during the execution of an application
program to dynamically change some of the configured values. These
functions are shown in Table 1-2.

Table 1-2. Functions That Alter Default Characteristics

Characteristic Dynamically Changed by

Primary GPIB address ibpad

Secondary GPIB address ibsad

End-of-string (EOS) byte ibeos

7- or 8-bit compare on EOS ibeos

Set EOI with EOS on Write ibeos

Terminate a Read on EOS ibeos

Set EOI w/last byte of Write ibeot

Change board assignment ibbna

Enable or disable DMA ibdma

Change or disable time limit ibtmo

Request/release system control ibrsc

Set/clear individual status bit ibist

Set/change serial poll status byte ibrsv

Set/clear Remote Enable line ibsre

Most of the above and more ibconfig

Chapter 1 General Information

© National Instruments Corp. 1-9 Visual Basic

Using the NI-488.2 Routine Examples

Table 1-3 lists the call syntax for each NI-488.2 routine and a brief
description of what each does in your Visual Basic application project.
These calls have the same syntax as the QuickBASIC/BASIC NI-488
functions. For a more detailed description, see Chapter 4, NI-488.2
Software Characteristics and Routines , in the NI-488.2 Software Reference
Manual for MS-DOS.

Table 1-3. Visual Basic NI-488.2 Routines

Call Syntax Description

AllSpoll (board%,addresslist%(),
 resultlist%())

Serial poll all devices

DevClear (board%,address%) Clear a single device

DevClearList (board%,
 addresslist%())

Clear multiple devices

EnableLocal
(board%,addresslist%())

Enable operations from the
front of a device

EnableRemote (board%,
 addresslist%())

Enable remote GPIB
programming of devices

FindLstn (board%,addresslist%(),
 resultlist%(),limit%)

Find all Listeners

FindRQS (board%,addresslist%(),
 result%)

Determine which device is
requesting service

PassControl (board%,address%) Pass control to another
device with Controller
capability

PPoll (board%,result%) Perform a parallel poll

PPollConfig (board%,address%,
 dataline%,sense%)

Configure a device for
parallel polls

PPollUnconfig (board%,
 addresslist%())

Unconfigure devices for
parallel polls

RcvRespMsg (board%,data$,
 termination%)

Read data bytes from
already addressed device

ReadStatusByte (board%,address%,
 result%)

Serial poll a single device
to get its status byte

(continues)

General Information Chapter 1

Visual Basic 1-10 © National Instruments Corp.

Table 1-3. Visual Basic NI-488.2 Routines (continued)

Call Syntax Description

Receive (board%,address%,data$,
 termination%)

Read data bytes from a
GPIB device

ReceiveSetup (board%,address%) Prepare a particular device
to send data bytes and
prepare the board to read
them

ResetSys (board%,addresslist%()) Initialize a GPIB system
on three levels

Send (board%,address%,data$,
 eotmode%)

Send data bytes to a single
GPIB device

SendCmds (board%,commands$) Send GPIB command
bytes

SendDataBytes (board%,data$,
 eotmode%)

Send data bytes to already
addressed devices

SendIFC (board%) Clear the GPIB interface
functions with IFC

SendList (board%,addresslist%(),
 data$,eotmode%)

Send data bytes to multiple
GPIB devices

SendLLO (board%) Send the local lockout
message to all devices

SendSetUp (board%,addresslist%()) Prepare particular devices
to receive data bytes

SetRWLS (board%,addresslist%) Place particular devices in
the Remote with Lockout
state

TestSRQ (board%,result%) Determine the current state
of the SRQ line

TestSys (board%,addresslist%,
 resultlist%())

Cause devices to conduct
self-tests

Trigger (board%,address%) Trigger a single device

TriggerList
(board%,addresslist%())

Trigger multiple devices

WaitSRQ (board%,result%) Wait until a device asserts
Service Request

© National Instruments Corp. 2-1 Visual Basic

Chapter 2
Programming Examples

This chapter contains programming examples for the NI-488.2 routines and
NI-488 functions. A detailed description of both the routines and functions
can be found in the NI-488.2 Software Reference Manual for MS-DOS.

Visual Basic NI-488.2 Programming Example

You can take full advantage of the IEEE 488.2-1987 standard by using the
NI-488.2 routines. These routines are completely compatible with the
controller commands and protocols defined in IEEE 488.2.

The NI-488.2 routines are easy to learn and use. Only a few routines are
needed for most application programs.

This example illustrates the programming steps that you can use to program
a representative IEEE 488.2 instrument from your personal computer using
the NI-488.2 routines. The NI-488.2 routines and subroutines are in bold
text to highlight their location and usage within the program. The
applications are written in Visual Basic. The target instrument is a Fluke
45. The purpose here is to explain how to use the driver to execute
NI-488.2 programming and control sequences and not how to determine
those sequences.

Note: For a more detailed description of each step, refer to Chapter 3,
Writing an Advanced Program Using NI-488.2 Routines, in the
getting started manual that you received with your interface
board.

1. Load in the definitions of the NI-488.2 routines from a file that is on
your distribution diskette.

2. Initialize the IEEE 488 bus and the interface board Controller circuitry
so that the IEEE 488 interface for each device is quiescent, and so that
the interface board is Controller-In-Charge and is in the Active
Controller State (CACS).

Programming Examples Chapter 2

Visual Basic 2-2 © National Instruments Corp.

3. Find all of the following Listeners.

a. Find all of the instruments attached to the IEEE 488 bus.

b. Create an array that contains all of the IEEE 488 primary addresses
that could possibly be connected to the IEEE 488 bus.

c. Find out which, if any, device or devices are connected.

4. Send an identification query to each device for identification.

5. Initialize the instrument as follows.

a. Clear the multimeter.

b. Send the IEEE 488.2 Reset command to the meter.

6. Instruct the meter to measure volts alternating current (VAC) using
auto-ranging (AUTO), to wait for a trigger from the Controller before
starting a measurement (TRIGGER 2), and to assert the IEEE 488
Service Request signal line, SRQ, when the measurement has been
completed and the meter is ready to send the result (*SRE 16).

7. Perform the following steps for each measurement.

a. Send the TRIGGER command to the multimeter. The command
"VAL1?" instructs the meter to send the next triggered reading to
its IEEE 488.2 output buffer.

b. Wait until the Fluke 45 asserts Service Request (SRQ) to indicate
that the measurement is ready to be read.

c. Read the status byte to determine if the measured data is valid or if
a fault condition exists. You can find out by checking the message
available (MAV) bit, bit 4 in the status byte.

d. If the data is valid, read 10 bytes from the Fluke 45.

8. End the session.

Chapter 2 Programming Examples

© National Instruments Corp. 2-3 Visual Basic

Figure 2-1 shows the Visual Basic environment with VB488_2.MAK
loaded. You can enter the Number of Readings used by your Fluke 45.
Clicking on Run Test runs the test program and clicking on Quit exits the
test program.

Figure 2-1. VB488_2.MAK

Programming Examples Chapter 2

Visual Basic 2-4 © National Instruments Corp.

Visual Basic Example Program–NI-488.2 Routines

'
' This function is the test program.
'
Sub RunTest ()

Static ReadingsArray#(100)

' Clear status and calculated data displays.

CurrentSample.Text = ""
CurrentReading.Text = ""
AvgVal.Text = ""
StdDevVal.Text = ""

Call ClearReadingsList

' Disable user inputs during test.

QuitButton.Enabled = 0

' The number of readings must be less than 101.

NumberOfReadings% = Val(NumReadings.Text)
If NumberOfReadings% > 100 Then

NumberOfReadings% = 50
End If
NumReadings.Text = Format$(NumberOfReadings%, "#")

Status.Caption = " FINDING "
Status.Refresh

Do
tmp% = Meter_Init()

Loop Until tmp% = 1

AvgValue# = 0#
Status.Caption = " RUNNING "
Status.Refresh

' Collect the readings.

For i% = 1 To NumberOfReadings%
Do

tmp% = Meter_Get_Reading(ReadingsArray#(i%))
Loop Until tmp% = 1
CurrentSample.Text = Str$(i%)

Chapter 2 Programming Examples

© National Instruments Corp. 2-5 Visual Basic

CurrentReading.Text = FormatReading$
(ReadingsArray#(i%))

AvgValue# = AvgValue# + ReadingsArray#(i%)
Next i%

' Display the list of readings.

For i% = 1 To NumberOfReadings%
If i% < 10 Then

DispStr$ = Format$(i%, " #") + Space$(16) +
FormatReading$(ReadingsArray#(i%))

Else
DispStr$ = Format$(i%, " #") + Space$(16) +

FormatReading$(ReadingsArray#(i%))
End If
ReadingsList.AddItem DispStr$

Next i%

' Put the board off-line

If (ilonl(0, 0) < 0) Then
Call ErrMsg("Error putting board off-line. ")

End If

' Calculate the average and standard deviation values.

AvgValue# = AvgValue# / NumberOfReadings%
AvgVal.Text = Format$(AvgValue#, "0.00000")
StdDev# = 0#
For i% = 1 To NumberOfReadings%

StdDev# = StdDev# +
(ReadingsArray#(i%) - AvgValue#) ^ 2

Next i%
StdDev# = Sqr(StdDev# / NumberOfReadings%)
StdDevVal.Text = Format$(StdDev#, "0.00000")

' Enable user inputs.

QuitButton.Enabled = 1
CurrentSample.Text = ""
CurrentReading.Text = ""
Status.Caption = " STOPPED "

End Sub

' This function initialized the meter by calling ibfind
' to open the DLL, ibpad to set the correct address of

Programming Examples Chapter 2

Visual Basic 2-6 © National Instruments Corp.

' the meter, and ibclr to clear the instrument to a
' known default state.

Function Meter_Init () As Integer
ReDim result%(30)
ReDim instruments%(31) ' array of primary addresses

Fluke% = -1

' Our board needs to be the Controller-In-Charge in
' order to find all listeners on the GPIB.
' To accomplish this, the subroutine SendIFC is
' called. If the error bit EERR is set in IBSTA%,
' call GPIBERR with an error message.

Call SendIFC(0)
If ibsta% And EERR Then

Call ErrMsg("Error sending IFC.")
Meter_Init = 0
Exit Function

End If

' Create an array containing all valid GPIB primary
' addresses. This array (INSTRUMENTS%) will be given
' to the subroutine FindLstn to find all listeners.
' The constant NOADDR, defined in NIGLOBAL.BAS,
' signifies the end of the array.

For k% = 0 To 30
instruments%(k%) = k%

Next k%
instruments%(31) = NOADDR

' Print "Finding all listeners on the bus..."

Call FindLstn(0, instruments%(), result%(), 31)
If ibsta% And EERR Then

Call ErrMsg("Error finding all listeners.")
Meter_Init = 0
Exit Function

End If

' Assign the value of IBCNT% to the variable
' NUM_LISTENERS%. The GPIB board is detected
' as a listener on the bus; however, it is
' not included in the final count of the
' number of listeners. Print the number of
' listeners found.

Chapter 2 Programming Examples

© National Instruments Corp. 2-7 Visual Basic

num_listeners% = ibcnt% - 1

' Send the *IDN? command to each device that was
' found. Your GPIB board is at address 0 by
' default. The board does not respond to *IDN?,
' so skip it.

' Establish a For loop to determine if the Fluke
' 45 is a listener on the GPIB. The variable k%
' will serve as a counter for the For loop and as
' the index to the array RESULT%.

For k% = 1 To num_listeners%

' Send the identification query to each listen
' address in the array RESULT%. The constant
' NLend, defined in NIGLOBAL.BAS, instructs the
' subroutine Send to append a linefeed character
' with EOI asserted to the end of the message.
' If the error bit EERR is set in IBSTA%,
' call GPIBERR with an error message.

Call Send(0, result%(k%), "*IDN?", NLend)
If ibsta% And EERR Then

Call ErrMsg("Error sending '*IDN?'. ")
Meter_Init = 0
Exit Function

End If

' Read the name identification response
' returned from each device. Store the response
' in string READING$. The constant STOPend,
' defined in NIGLOBAL.BAS, instructs the
' subroutine Receive to terminate the read when
' END is detected. If the error bit EERR is
' set in IBSTA%, call GPIBERR with an error message.

Reading$ = Space$(&H32)
Call Receive(0, result%(k%), Reading$, STOPend)
If ibsta% And EERR Then

Call ErrMsg("Error in receiving response
to '*IDN?'. ")

Meter_Init = 0
Exit Function

End If

Programming Examples Chapter 2

Visual Basic 2-8 © National Instruments Corp.

' The low byte of the listen address is the primary
' address. Assign the variable PAD% the primary
' address of the device.

pad% = result%(k%) And &HFF

' Determine if the name identification is the
' Fluke 45. If it is the Fluke 45, assign PAD%
' to FLUKE%, print message that the Fluke 45 has
' been found, call the subroutine FOUND, branch
' to the label PROGEND.

If Left$(Reading$, 9) = "Fluke, 45" Then
Fluke% = pad%
Exit For

End If

Next k% ' End of For loop

If (Fluke% <> -1) Then
tmp$ = "Found the Fluke 45 at primary address " +

Str$(Fluke%)
MsgBox tmp$, 0

Else
Call ErrMsg("Did not find Fluke 45. Check your

GPIB cables and try again.")
Meter_Init = 0
Exit Function

End If

' DevClear will send the GPIB Selected Device Clear
' (SDC) command message to the Fluke 45. If the
' error bit EERR is set in IBSTA%, call GPIBERR
' with an error message.

Call DevClear(0, Fluke%)
If ibsta% And EERR Then

Call ErrMsg("Error in clearing the Fluke 45. ")
Meter_Init = 0
Exit Function

End If

Chapter 2 Programming Examples

© National Instruments Corp. 2-9 Visual Basic

' Reset the Fluke 45 (*RST). Program the Fluke 45 to
' measure using volts alternating current (VAC) using
' autoranging (AUTO), to wait for a trigger from the
' board (TRIGGER 2), and then assert the IEEE 488
' Service Request, SRQ. When the measurement
' has been completed and the Fluke 45 is ready to send
' the result (*SRE 16).

Call Send(0, Fluke%, "*RST; VAC; AUTO; TRIGGER 2;
*SRE 16", NLend)

If ibsta% And EERR Then
Call ErrMsg("Error in writing commands to

Fluke 45. ")
Meter_Init = 0
Exit Function

End If

Meter_Init = 1

End Function

Function Meter_Get_Reading (reading_val#) As Integer

' Trigger the Fluke 45 by sending the trigger
' command (*TRG) and request a measurement by
' sending the command "VAL1?". If the error bit
' EERR is set in IBSTA%, call GPIBERR with an
' error message.

Static Status As Integer

Call Send(0, Fluke%, "*TRG; VAL1?", NLend)
If ibsta% And EERR Then

Call ErrMsg("Error sending trigger. ")
Meter_Get_Reading = 0
Exit Function

End If

' Wait for the Fluke 45 to assert SRQ. This means it is
' ready to send a measurement. If SRQ is not
' asserted within the timeout period, call GPIBERR
' with an error message. The timeout period by
' default is 10 seconds.

Call WaitSRQ(0, SRQasserted%)
If SRQasserted% = 0 Then

Call ErrMsg("Error: Fluke 45 did not assert SRQ. ")

Programming Examples Chapter 2

Visual Basic 2-10 © National Instruments Corp.

Meter_Get_Reading = 0
Exit Function

End If

' Read the serial poll status byte of the Fluke 45.
' If the error bit EERR is set in IBSTA%, call
' GPIBERR with an error message.

Call ReadStatusByte(0, Fluke%, Status%)
If ibsta% And EERR Then

Call ErrMsg("Error: could not read status byte from
Fluke 45. ")

Meter_Get_Reading = 0
Exit Function

End If

' Check to see if the Message Available Bit (bit 4)
' of the return status byte is set. If this bit is
' not set, print the status byte and call GPIBERR
' with an error message.

If (Status% And &H10) <> &H10 Then
Call ErrMsg("Error: status byte does not have

MAV bit (&H10) set. ")
Meter_Get_Reading = 0
Exit Function

End If

' Read the Fluke 45 measurement. Store the
' measurement in string READING$. The constant
' STOPend, defined in NIGLOBAL.BAS, instructs the
' subroutine Receive to terminate the read when
' END is detected. If the error bit EERR is set
' in IBSTA%, call GPIBERR with an error
' message.

Reading$ = Space$(20)
Call Receive(0, Fluke%, Reading$, STOPend)
If ibsta% And EERR Then

Call ErrMsg("Error getting reading from Fluke 45. ")
Meter_Get_Reading = 0
Exit Function

End If

Chapter 2 Programming Examples

© National Instruments Corp. 2-11 Visual Basic

' The intent of this next line is to tack a ';' onto
' the end of the Reading$. This is so the subsequent
' call to Val works properly.

Reading$ = Mid$(Reading$, 1, ibcnt%) + ";"
reading_val# = Val(Reading$)

Meter_Get_Reading = 1

End Function

Programming Examples Chapter 2

Visual Basic 2-12 © National Instruments Corp.

GPIB Programming Examples

The sample project that follows illustrates the programming steps that you
can use to program a representative IEEE 488 instrument from your
personal computer using the NI-488 functions. The NI-488 functions and
subroutines are in bold text to highlight their location and usage within the
program. The target instrument is a Fluke 45 dual display multimeter. The
purpose of this example is to illustrate both how you can use the NI-488
functions to program an IEEE 488 instrument and how you can use Visual
Basic to create a user-friendly graphical environment in which to run your
application.

The following sequence of actions is necessary to program the Fluke 45 to
make and return measurements of a high frequency AC voltage signal in the
autoranging mode.

1. Initialize the GPIB interface and Fluke 45.

2. Instruct the Fluke 45 to measure volts alternating current (VAC) using
autoranging (AUTO), to wait for a trigger from the Controller before
starting a measurement (TRIGGER 2), and to assert the IEEE 488
Service Request signal line, SRQ, when the measurement has been
completed and the meter is ready to send the result (*SRE 16).

3. Complete the following steps for each measurement.

a. Trigger the Fluke 45 and then write "VAL1?" to the Fluke 45 to
tell it to send the next reading to its IEEE 488 output buffer.

b. Wait for the Fluke 45 to assert SRQ to indicate that the next
measurement is ready.

c. Serial poll the Fluke 45 to determine whether the measured data is
valid or if a fault condition exists. The measured data is valid if the
MAV (message available) bit (bit 4) is set in the status byte
returned from the serial poll.

d. If the data is valid, then read 10 bytes from the Fluke 45.

Chapter 2 Programming Examples

© National Instruments Corp. 2-13 Visual Basic

Figure 2-2 shows the graphical user interface window which is opened
when you run one of the GPIB sample projects. You can enter the Number
of Readings and the Primary Address used by your Fluke 45. Clicking on
Run Test runs the test program and clicking on Quit exits the test program.

Figure 2-2. VBDEVICE.MAK

Programming Examples Chapter 2

Visual Basic 2-14 © National Instruments Corp.

Visual Basic Example Program–Device Functions

Sub RunTest ()

Static ReadingsArray#(100)

' Clear status and calculated data displays.

CurrentSample.Text = ""
CurrentReading.Text = ""
AvgVal.Text = ""
StdDevVal.Text = ""

Call ClearReadingsList

' Disable the user inputs during test.

QuitButton.Enabled = 0

' The number of readings must be less than 101.

NumberOfReadings% = Val(NumReadings.Text)
If NumberOfReadings% > 100 Then

NumberOfReadings% = 50
End If
NumReadings.Text = Format$(NumberOfReadings%, "#")

Do
tmp% = Meter_Init(Val(addr.Text))

Loop Until tmp% = 1

AvgValue# = 0#
status.Caption = " RUNNING "
status.Refresh

' Collect the readings.

For i% = 1 To NumberOfReadings%
Do

tmp% = Meter_Get_Reading(ReadingsArray#(i%))
Loop Until tmp% = 1
CurrentSample.Text = Str$(i%)
CurrentReading.Text = FormatReading$

(ReadingsArray#(i%))
AvgValue# = AvgValue# + ReadingsArray#(i%)

Next i%

Chapter 2 Programming Examples

© National Instruments Corp. 2-15 Visual Basic

' Display the list of readings.

For i% = 1 To NumberOfReadings%
If i% < 10 Then

DispStr$ = Format$(i%, " #") + Space$(16) +
FormatReading$(ReadingsArray#(i%))

Else
DispStr$ = Format$(i%, " #") + Space$(16) +

FormatReading$(ReadingsArray#(i%))
End If
ReadingsList.AddItem DispStr$

Next i%

' Put the device off-line.

If (ilonl(Dev%, 0) < 0) Then
Call ErrMsg("Error putting device off-line.")

End If

' Calculate the average and standard deviation values.

AvgValue# = AvgValue# / NumberOfReadings%
AvgVal.Text = Format$(AvgValue#, "0.00000")
StdDev# = 0#
For i% = 1 To NumberOfReadings%

StdDev# = StdDev# +
(ReadingsArray#(i%) - AvgValue#) ^ 2

Next i%
StdDev# = Sqr(StdDev# / NumberOfReadings%)
StdDevVal.Text = Format$(StdDev#, "0.00000")

' Enable the user inputs.

QuitButton.Enabled = 1
CurrentSample.Text = ""
CurrentReading.Text = ""
status.Caption = " STOPPED "

End Sub

Function Meter_Get_Reading (reading_val#) As Integer

' Trigger the Fluke 45.

Programming Examples Chapter 2

Visual Basic 2-16 © National Instruments Corp.

If (iltrg(Dev%) < 0) Then
Call ErrMsg("Error triggering device.")
Meter_Get_Reading = 0
Exit Function

End If

' Request the triggered measurement by sending
' VAL1?

wrtbuf$ = "VAL1?"
If (ilwrt(Dev%, wrtbuf$, Len(wrtbuf$)) < 0) Then

Call ErrMsg("Error writing to device.")
Meter_Get_Reading = 0
Exit Function

End If

' Wait for the Fluke 45 to request service (RQS)
' or timeout.

If (ilwait(Dev%, &H4800) < 0) Then
Call ErrMsg("Error waiting for RQS or TIMO.")
Meter_Get_Reading = 0
Exit Function

End If
If (ibsta And &H4000) Then

Call ErrMsg("Wait for RQS timed out.")
Meter_Get_Reading = 0
Exit Function

End If

' If the returned status byte is &H50, then the
' Fluke 45 has valid data to send.

If (ilrsp(Dev%, SPollByte%) < 0) Then
Call ErrMsg("Error serial polling the device.")
Meter_Get_Reading = 0
Exit Function

End If
If (SPollByte% <> &H50) Then

Call ErrMsg("Serial poll byte is NOT &H50.")
Meter_Get_Reading = 0
Exit Function

End If

' Read the Fluke 45 measurement.

Chapter 2 Programming Examples

© National Instruments Corp. 2-17 Visual Basic

rdbuf$ = Space$(10)
If (ilrd(Dev%, rdbuf$, Len(rdbuf$)) < 0) Then

Call ErrMsg("Error reading from device.")
Meter_Get_Reading = 0
Exit Function

End If
reading_val# = Val(rdbuf$)

Meter_Get_Reading = 1
End Function

Function Meter_Init (addr%) As Integer
Dev% = ilfind("DEV1")
If Dev% < 0 Then

MsgBox "Error opening device. I'm quitting!", 16
End

End If
If (ilpad(Dev%, addr%) < 0) Then

Call ErrMsg("Error device's address.")
Meter_Init = 0
Exit Function

End If
If (ilclr(Dev%) < 0) Then

Call ErrMsg("Error clearing device.")
Meter_Init = 0
Exit Function

End If

' Reset the Fluke 45 (*RST), program the Fluke 45
' to measure using volts alternating current (VAC)
' using autoranging (AUTO), to wait for a trigger
' from the board (TRIGGER 2), and
' then assert the IEEE 488 Service Request, SRQ,
' when the measurement has been completed and the
' Fluke 45 is ready to send the result (*SRE 16).

wrtbuf$ = "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"
If (ilwrt(Dev%, wrtbuf$, Len(wrtbuf$)) < 0) Then

Call ErrMsg("Error initializing device.")
Meter_Init = 0
Exit Function

End If

Meter_Init = 1

End Function

Programming Examples Chapter 2

Visual Basic 2-18 © National Instruments Corp.

Visual Basic Example Program–Board Functions

' This function is the test program.

Sub RunTest ()

Static ReadingsArray#(100)

' Clear status and calculated data displays.

CurrentSample.Text = ""
CurrentReading.Text = ""
AvgVal.Text = ""
StdDevVal.Text = ""

Call ClearReadingsList

' Disable the user inputs during test.

QuitButton.Enabled = 0

' The number of readings must be less than 101.

NumberOfReadings% = Val(NumReadings.Text)
If NumberOfReadings% > 100 Then

NumberOfReadings% = 50
End If
NumReadings.Text = Format$(NumberOfReadings%, "#")

Do
tmp% = Meter_Init(Val(addr.Text))

Loop Until tmp% = 1

AvgValue# = 0#
status.Caption = " RUNNING "
status.Refresh

' Collect the readings.

For i% = 1 To NumberOfReadings%
Do

tmp% = Meter_Get_Reading(ReadingsArray#(i%))
Loop Until tmp% = 1
CurrentSample.Text = Str$(i%)
CurrentReading.Text = FormatReading$

(ReadingsArray#(i%))
AvgValue# = AvgValue# + ReadingsArray#(i%)

Next i%

Chapter 2 Programming Examples

© National Instruments Corp. 2-19 Visual Basic

' Display the list of readings.

For i% = 1 To NumberOfReadings%
If i% < 10 Then

DispStr$ = Format$(i%, " #") + Space$(16) +
FormatReading$(ReadingsArray#(i%))

Else
DispStr$ = Format$(i%, " #") + Space$(16) +

FormatReading$(ReadingsArray#(i%))
End If
ReadingsList.AddItem DispStr$

Next i%

' Put the board off-line.

If (ilonl(Bd%, 0) < 0) Then
Call ErrMsg("Error putting board off-line. Press

OK to ignore or Cancel to quit.")
End If

' Calculate the average and standard deviation values.

AvgValue# = AvgValue# / NumberOfReadings%
AvgVal.Text = Format$(AvgValue#, "0.00000")
StdDev# = 0#
For i% = 1 To NumberOfReadings%

StdDev# = StdDev# +
(ReadingsArray#(i%) - AvgValue#) ^ 2

Next i%
StdDev# = Sqr(StdDev# / NumberOfReadings%)
StdDevVal.Text = Format$(StdDev#, "0.00000")

' Enable user inputs.

QuitButton.Enabled = 1
CurrentSample.Text = ""
CurrentReading.Text = ""
status.Caption = " STOPPED "

End Sub

' This function reads from the instrument a string
' containing a reading in ASCII format. The value
' in the string is converted and returned to you
' as a real number so you can use the value for
' other calculations and decision making.

Programming Examples Chapter 2

Visual Basic 2-20 © National Instruments Corp.

Function Meter_Get_Reading (reading_val#) As Integer

' Trigger the Fluke 45.

trg$ = "?_" + Chr$(&H20 + (Val(addr.Text))) +
"@" + Chr$(&H8)

If (ilcmd(Bd%, trg$, 5) < 0) Then
Call ErrMsg("Error triggering device.")
Meter_Get_Reading = 0
Exit Function

End If

' Request the triggered measurement by sending VAL1?

wrtbuf$ = "VAL1?"
If (ilwrt(Bd%, "VAL1?", 5) < 0) Then

Call ErrMsg("Error writing to device.")
Meter_Get_Reading = 0
Exit Function

End If

' Wait for the Fluke 45 to request service (SRQI) or
' timeout (TIMO).

If (ilwait(Bd%, &H5000) < 0) Then
Call ErrMsg("Error waiting for SRQI or TIMO.")
Meter_Get_Reading = 0
Exit Function

End If
If (ibsta And &H4000) Then

Call ErrMsg("Wait for SRQI timed out.")
Meter_Get_Reading = 0
Exit Function

End If

' Conduct a serial poll by doing the following:
' 1. send UNT UNL SPE fluke-talk-address board-

listen-address
' 2. read the 1 byte serial poll response
' 3. send SPD

' UNT is untalk (&H5F = '_'), UNL is unlisten
' (&H3F = '?'), SPE is serial poll enable (&H18),
' fluke-talk-address is (pad + &H40), board-listen-
' address is (0 + &H20 = ' '), and SPD is serial
' poll disable (&H19). See Appendix A of the
' Software Reference Manual for a complete
' description of the GPIB command bytes.

Chapter 2 Programming Examples

© National Instruments Corp. 2-21 Visual Basic

cmd$ = "_?" + Chr$(&H18) + Chr$(&H40 +
(Val(addr.Text))) + " "

If (ilcmd(Bd%, cmd$, Len(cmd$)) < 0) Then
Call ErrMsg("Error sending UNT UNL SPE MTA MLA

to device.")
End If
rdbuf$ = Space$(1)
If (ilrd(Bd%, rdbuf$, 1) < 0) Then

Call ErrMsg("Error reading response from device.")
Meter_Get_Reading = 0
Exit Function

End If
If (Asc(rdbuf$) <> &H50) Then

Call ErrMsg("Serial poll byte is NOT &H50.")
Meter_Get_Reading = 0
Exit Function

End If
cmd$ = Chr$(&H19)
If (ilcmd(Bd%, cmd$, 1) < 0) Then

Call ErrMsg("Error sending SPD to device.")
Meter_Get_Reading = 0
Exit Function

End If

' Read the Fluke 45 measurement.

rdbuf$ = Space$(10)
If (ilrd(Bd%, rdbuf$, Len(rdbuf$)) < 0) Then

Call ErrMsg("Error reading from device.")
Meter_Get_Reading = 0
Exit Function

End If
reading_val# = Val(rdbuf$)

Meter_Get_Reading = 1
End Function

' This function initializes the meter by calling ibfind
' to open the DLL, ibpad to set the correct address of
' the meter, and ibclr to clear the instrument to a
' known default state.

Programming Examples Chapter 2

Visual Basic 2-22 © National Instruments Corp.

Function Meter_Init (addr%) As Integer

Bd% = ilfind("GPIB0")
If Bd% < 0 Then

MsgBox "Error finding board. I'm quitting!", 16
End

End If

' Send interface clear (IFC) to all devices.

If (ilsic(Bd%) < 0) Then
Call ErrMsg("Error with send IFC.")
Meter_Init = 0
Exit Function

End If

' Turn on the Remote Enable (REN) signal.

If (ilsre(Bd%, 1) < 0) Then
Call ErrMsg("Error with send IFC.")
Meter_Init = 0
Exit Function

End If

' Inhibit front panel control with the Local Lockout
' (LLO) command (&H11). Place the Fluke 45 in remote
' mode by addressing it to listen. The listen address
' is the primary address plus &H20. Send the Device
' Clear (DCL) message (&H14) to clear internal device
' functions. Finally, address the GPIB interface
' board to talk by sending its talk address (0 + &H40).

cmd$ = Chr$(&H11) + Chr$(&H20 + addr%) +
Chr$(&H14) + Chr$(&H40)

If (ilcmd(Bd%, cmd$, 4) < 0) Then
Call ErrMsg("Error with sending command bytes.")
Meter_Init = 0
Exit Function

End If

' Reset the Fluke 45 (*RST), program the Fluke 45 to
' measure using volts alternating current (VAC) using
' autoranging (AUTO), to wait for a trigger from the
' board (TRIGGER 2), and then assert the
' IEEE 488 Service Request, SRQ, when the measurement
' has been completed and the Fluke 45 is ready to send
' the result (*SRE 16).

Chapter 2 Programming Examples

© National Instruments Corp. 2-23 Visual Basic

wrtbuf$ = "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"
If (ilwrt(Bd%, wrtbuf$, Len(wrtbuf$)) < 0) Then

Call ErrMsg("Error writing commands to Fluke 45.")
Meter_Init = 0
Exit Function

End If

Meter_Init = 1
End Function

© National Instruments Corp. A-1 Visual Basic

Appendix A
Multiline Interface Messages

This appendix contains an interface message reference list, which describes
the mnemonics and messages that correspond to the interface functions.
These multiline interface messages are sent and received with ATN TRUE.

For more information on these messages, refer to the ANSI/IEEE Standard
488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation .

Multiline Interface Messages Appendix A

Visual Basic A-2 © National Instruments Corp.

Multiline Interface Messages

 Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

00 000 0 NUL 20 040 32 SP MLA0
01 001 1 SOH GTL 21 041 33 ! MLA1
02 002 2 STX 22 042 34 " MLA2
03 003 3 ETX 23 043 35 # MLA3
04 004 4 EOT SDC 24 044 36 $ MLA4
05 005 5 ENQ PPC 25 045 37 % MLA5
06 006 6 ACK 26 046 38 & MLA6
07 007 7 BEL 27 047 39 ' MLA7

08 010 8 BS GET 28 050 40 (MLA8
09 011 9 HT TCT 29 051 41) MLA9
0A 012 10 LF 2A 052 42 * MLA10
0B 013 11 VT 2B 053 43 + MLA11
0C 014 12 FF 2C 054 44 , MLA12
0D 015 13 CR 2D 055 45 - MLA13
0E 016 14 SO 2E 056 46 . MLA14
0F 017 15 SI 2F 057 47 / MLA15

10 020 16 DLE 30 060 48 0 MLA16
11 021 17 DC1 LLO 31 061 49 1 MLA17
12 022 18 DC2 32 062 50 2 MLA18
13 023 19 DC3 33 063 51 3 MLA19
14 024 20 DC4 DCL 34 064 52 4 MLA20
15 025 21 NAK PPU 35 065 53 5 MLA21
16 026 22 SYN 36 066 54 6 MLA22
17 027 23 ETB 37 067 55 7 MLA23

18 030 24 CAN SPE 38 070 56 8 MLA24
19 031 25 EM SPD 39 071 57 9 MLA25
1A 032 26 SUB 3A 072 58 : MLA26
1B 033 27 ESC 3B 073 59 ; MLA27
1C 034 28 FS 3C 074 60 < MLA28
1D 035 29 GS 3D 075 61 = MLA29
1E 036 30 RS 3E 076 62 > MLA30
1F 037 31 US 3F 077 63 ? UNL

Message Definitions

DCL Device Clear
GET Group Execute Trigger
GTL Go To Local
LLO Local Lockout
MLA My Listen Address

MSA My Secondary Address
MTA My Talk Address
PPC Parallel Poll Configure
PPD Parallel Poll Disable

Appendix A Multiline Interface Messages

© National Instruments Corp. A-3 Visual Basic

Multiline Interface Messages

 Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

40 100 64 @ MTA0 60 140 96 ` MSA0,PPE
41 101 65 A MTA1 61 141 97 a MSA1,PPE
42 102 66 B MTA2 62 142 98 b MSA2,PPE
43 103 67 C MTA3 63 143 99 c MSA3,PPE
44 104 68 D MTA4 64 144 100 d MSA4,PPE
45 105 69 E MTA5 65 145 101 e MSA5,PPE
46 106 70 F MTA6 66 146 102 f MSA6,PPE
47 107 71 G MTA7 67 147 103 g MSA7,PPE

48 110 72 H MTA8 68 150 104 h MSA8,PPE
49 111 73 I MTA9 69 151 105 i MSA9,PPE
4A 112 74 J MTA10 6A 152 106 j MSA10,PPE
4B 113 75 K MTA11 6B 153 107 k MSA11,PPE
4C 114 76 L MTA12 6C 154 108 l MSA12,PPE
4D 115 77 M MTA13 6D 155 109 m MSA13,PPE
4E 116 78 N MTA14 6E 156 110 n MSA14,PPE
4F 117 79 O MTA15 6F 157 111 o MSA15,PPE

50 120 80 P MTA16 70 160 112 p MSA16,PPD
51 121 81 Q MTA17 71 161 113 q MSA17,PPD
52 122 82 R MTA18 72 162 114 r MSA18,PPD
53 123 83 S MTA19 73 163 115 s MSA19,PPD
54 124 84 T MTA20 74 164 116 t MSA20,PPD
55 125 85 U MTA21 75 165 117 u MSA21,PPD
56 126 86 V MTA22 76 166 118 v MSA22,PPD
57 127 87 W MTA23 77 167 119 w MSA23,PPD

58 130 88 X MTA24 78 170 120 x MSA24,PPD
59 131 89 Y MTA25 79 171 121 y MSA25,PPD
5A 132 90 Z MTA26 7A 172 122 z MSA26,PPD
5B 133 91 [MTA27 7B 173 123 { MSA27,PPD
5C 134 92 \ MTA28 7C 174 124 | MSA28,PPD
5D 135 93] MTA29 7D 175 125 } MSA29,PPD
5E 136 94 ^ MTA30 7E 176 126 ~ MSA30,PPD
5F 137 95 _ UNT 7F 177 127 DEL

PPE Parallel Poll Enable
PPU Parallel Poll Unconfigure
SDC Selected Device Clear
SPD Serial Poll Disable

SPE Serial Poll Enable
TCT Take Control
UNL Unlisten
UNT Untalk

© National Instruments Corp. B-1 Visual Basic

Appendix B
Customer Communication

For your convenience, this appendix contains forms to help you gather the
information necessary to help us solve technical problems you might have
as well as a form you can use to comment on the product documentation.
Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around
the world. In the U.S. and Canada, applications engineers are available
Monday through Friday from 8:00 a.m. to 6:00 p.m. (central time). In other
countries, contact the nearest branch office. You may fax questions to us at
any time.

Corporate Headquarters
(512) 795-8248
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices Phone Number Fax Number
Australia 03 879 9422 03 879 9179
Austria 0662 435986 0662 437010 19
Belgium 02 757 00 20 02 757 03 11
Denmark 45 76 26 00 45 76 71 11
Finland 90 527 2321 90 502 2930
France 1 48 65 33 00 1 48 65 19 07
Germany 089 7 14 50 93 089 7 14 60 35
Italy 02 48301892 02 48301915
Japan 03 3788 1921 03 3788 1923
Netherlands 01720 45761 01720 42140
Norway 03 846866 03 846860
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 27 00 20 056 27 00 25
U.K. 0635 523545 0635 523154

or 0800 289877 (in U.K. only)

Technical Support Form

Photocopy this form and update it each time you make changes to your
software or hardware, and use the completed copy of this form as a
reference for your current configuration. Completing this form accurately
before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products
related to this problem, include the configuration forms from their user
manuals. Include additional pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand

Model Processor

Operating system

Speed MHz RAM MB

Display adapter

Mouse yes no

Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model

Revision

Configuration

(continues)

Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Visual Basic Hardware and Software
Configuration Form

Record the settings and revisions of your hardware and software on the line
to the right of each item. Update this form each time you revise your
software or hardware configuration, and use this form as a reference for
your current configuration.

National Instruments Products

• NI-488.2 Software Revision Number on Disk

• Programming Language Interface Revision

• Type of National Instruments GPIB boards installed and their respective
hardware settings

Board Type
Base I/O
Address

Interrupt
Level

DMA
Channel

Other Products

• Computer Make and Model

• Microprocessor

• Clock Frequency

• Type of Monitor Card Installed

• DOS Version

• Windows Version

• Programming Language Version

• Type of other boards installed and their respective hardware settings

Board Type
Base I/O
Address

Interrupt
Level

DMA
Channel

Documentation Comment Form

National Instruments encourages you to comment on the documentation
supplied with our products. This information helps us provide quality
products to meet your needs.

Title: Using Your NI-488 and NI-488.2 Subroutines for
Visual Basic for Windows

Edition Date: February 1994

Part Number: 320418-01

Please comment on the completeness, clarity, and organization of the
manual.

(continues)

If you find errors in the manual, please record the page numbers and
describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
MS 53-02
(512) 794-5678

© National Instruments Corp. G-1 Visual Basic

Glossary

Prefix Meaning Value

m
µ
n
M

milli
micro
nano
mega

10-3

10-6

10-9

106

AC alternating current
ANSI American National Standards Institute
ASCII American Standard Code for Information

Interchange
ATN Attention
AUTO autoranging
DCL Device Clear
DLL dynamic link library
DMA direct memory access
DVM digital voltmeter
EOI end or identify
EOS end of string
GPIB General Purpose Interface bus
hex hexadecimal
Hz hertz
IEEE Institute of Electrical and Electronic Engineers
IFC Interface Clear
I/O input/output
IFC Interface Clear
LLO Local Lockout
MB megabytes of memory
MAV message available bit
MLA My Listen Address
MTA My Talk Address
OEM original equipment manufacturer
PPC Parallel Poll Configure
PPD Parallel Poll Disable
PPE Parallel Poll Enable
RAM random-access memory

Glossary

Visual Basic G-2 © National Instruments Corp.

REN Remote Enable
SDC Select Device Clear
SPD Serial Poll Disable
SPE Serial Poll Enable
SRQ Service Request
SRQI Request Service
TIMO Timeout Command
UNL Unlisten Command
UNT Untalk Command
VAC volts alternating current
Val value

	Using Your NI-488 ® and NI-488.2 ™Subroutines for Visual Basic for Windows
	Limited Warranty
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of National Instruments Products

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 General Information
	Visual Basic Files
	Programming Preparations
	Visual Basic NI-488 I/O Calls and Functions
	NI-488 IL Functions
	Dynamic Reconfiguration of Board and Device Characteristics
	Using the NI-488.2 Routine Examples

	Chapter 2 Programming Examples
	Visual Basic NI-488.2 Programming Example
	Visual Basic Example Program–NI-488.2 Routines
	GPIB Programming Examples
	Visual Basic Example Program–Device Functions
	Visual Basic Example Program–Board Functions

	Appendix A Multiline Interface Messages
	Appendix B Customer Communication
	Glossary
	Figures
	Figure 1-1. GPIBPROJ.MAK
	Figure 2-1. VB488_2.MAK
	Figure 2-2. VBDEVICE.MAK

	Tables
	Table 1-1. Visual Basic NI-488 Calls
	Table 1-2. Functions That Alter Default Characteristics
	Table 1-3. Visual Basic NI-488.2 Routines

